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Abstract— This work provides the power correlation coefficient
of a very general fading model. The model considers the signal
as composed of identically/non-identically distributed clusters,
allows for stationary/nonstationary environments, and includes
many distributions as particular cases, such as the Rayleigh, Rice,
Nakagami-m, and Hoyt (Nakagami-q) ones. After deriving the
power correlation coefficient of the general model, that statistic is
particularized for some important simplified models. Finally, for
the Rayleigh, Rice, and Hoyt distributions, the power correlation
coefficient is investigated in both space domain and frequency
domain.

Index Terms— Correlation coefficient, fading model, Hoyt dis-
tribution, Nakagami-m distribution, Rayleigh distributi on, Rice
distribution.

I. I NTRODUCTION

In wireless communications, the signal strength fluctuates
randomly throughout the propagation environment in a fast
fading condition. This fluctuation is caused by the multipath
phenomenon, in which the signal reaching the receiver is
composed of a large number of scattered waves that arise from
different paths. The amplitudes and phases of these waves are
random variables, and hence the envelope and the phase of
the received signal have random behaviors. In some physical
configurations, besides the scattered waves, the signal is also
influenced by a specular (or dominant) wave.

Many distributions have already been proposed to describe
the signal envelope in a fading channel. In some of them, such
as the Rayleigh [1], the Rice [2], [3], the Hoyt (Nakagami-
q) [4], the Asymmetricalη − κ [5], the Symmetricalη − κ
[6], and the Generalizedη − κ distributions, the in-phase and
quadrature signal components are Gaussian variates. The dif-
ference among these models are in the assumptions concerning
the means and variances of the quadrature components: the
Rayleigh model considers zero means and equal variances; the
Ricean model, arbitrary means and equal variances; the Hoyt
model, zero means and arbitrary variances; the Asymmetrical
η−κ model, zero mean in one quadrature component, arbitrary
mean in the other, and arbitrary variances; the Symmetrical
η−κ model, arbitrary means and variances whose ratio is equal
to the ratio of the squared means; and the Generalizedη − κ
model, arbitrary means and variances. In other distributions,
such as the Nakagami-m [7], theκ−µ [8], and theη−µ [9], the
signal is composed of clusters of waves. These models differ
from each other in the statistical properties of the clusters:
in the Nakagami-m model, each cluster follows the Rayleigh
distribution; in theκ− µ model, the Rice distribution; and in
the η − µ model, the Hoyt distribution.

In this work, we derive the correlation coefficient of the
instantaneous powers (or squared envelopes) of two signals
in a very general fading model. Such a model considers each
signal as composed of clusters of waves. The in-phase and
quadrature components of each cluster are Gaussian random
variables with arbitrary means and variances. Thus, the model
includes all previously mentioned models as particular cases.
Furthermore, the model is valid for both identically and non-
identically distributed clusters, and for both stationary1 and
nonstationary environments.

After obtaining the power correlation coefficient of the
general fading model, we particularize this statistic for some
important models. Finally, numerical results are presented in
order to compare the power correlation coefficient of the
Rayleigh, Rice, and Hoyt distributions in both space domain
and frequency domain.

The paper is organized as follows. In Section II, the general
fading model is described. In Section III, the power correlation
coefficient is derived. In Section IV, some plots and resultsare
examined. In Section V, some conclusions are drawn.

II. GENERAL FADING MODEL

In this section, we describe the marginal and joint statistics
concerning two signals,S1 andS2, of the general fading model
investigated in this work.

A. Marginal Statistics

The signal of our general fading model consists of clusters
of waves, each of which composed of a dominant wave and of
multipath (or scattered) waves. Denoting the envelope of the
signal Si as Ri, the corresponding instantaneous powerWi

(or squared envelopeR2
i ) is

Wi = R2

i =

ni
∑

j=1

R2

i,j i = 1, 2 (1)

whereni is the number of clusters ofSi. In each signal, the
variatesRi,j , j = 1, 2, ..., ni, are mutually independent and
given by

R2

i,j = X2

i,j + Y 2

i,j j = 1, 2, ..., ni (2)

whereXi,j and Yi,j are uncorrelated Gaussian random vari-
ables that correspond, respectively, the in-phase and quadrature

1In this work, the termstationary environmentdesignates the environment
where the statistics of one signal are equal to their counterpart of the other
signal.
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components of each cluster. The variatesXi,j and Yi,j have
meansmXi,j

andmYi,j
, which arise from the dominant wave

of the jth cluster, and variancesσ2

Xi,j
andσ2

Yi,j
, which stem

from the multipath waves of thejth cluster. Finally, without
loss of generality, we shall consider

n2 ≥ n1 (3)

In particular, for stationary environments, the statistics of
one signal are equal to their counterpart of the other signal.
Therefore, in these environments,n1 = n2 = n and

mX1,j
= mX2,j

mY1,j
= mY2,j

j = 1, ..., n (4a)

σX1,j
= σX2,j

σY1,j
= σY2,j

j = 1, ..., n (4b)

B. Joint Statistics

The dependency of the signalsS1 andS2 occurs by means
of n0 clusters,n0 ≤ n1. These clusters will be referred to as
sharedclusters and will be indexed, without loss of generality,
as the firstn0 clusters ofS1 as well as the firstn0 clusters of
S2. Thus, forn0 < j ≤ ni, i = 1, 2, the jth cluster ofSi has
no corresponding cluster in the other signal. These clusters
will be referred to asunsharedclusters.

1) Shared Clusters:In the jth sharedcluster,X1,j, Y1,j ,
X2,j , andY2,j are jointly Gaussian random variables, and their
correlation coefficients are defined as

ν1,j ,
E{X1,jX2,j} − mX1,j

mX2,j

σX1,j
σX2,j

,
E{Y1,jY2,j} − mY1,j

mY2,j

σY1,j
σY2,j

(5a)

ν2,j ,
E{X1,jY2,j} − mX1,j

mY2,j

σX1,j
σY2,j

, −E{Y1,jX2,j} − mY1,j
mX2,j

σY1,j
σX2,j

(5b)

wherej = 1, 2, ..., n0. In a fading environment, these coeffi-
cients depend on the distance between the reception points,on
the frequency difference between the transmitted signals,and
on the statistical behavior of the angles of arrival and times
of arrival of the scattered waves [10], [11].

2) Unshared Clusters:Each one of theunsharedclusters
is present in only one signal. Thus, forn0 < j ≤ n1, the
jth cluster ofS1 is statistically independent of thejth cluster
of S2. Consequently, forn0 < j ≤ n1, X1,j and Y1,j are
independent ofX2,j andY2,j , as well asR1,j is independent
of R2,j .

3) Distinct Indexes:For distinct indexes,∀j 6= k, X1,j and
Y1,j are independent ofX2,k and Y2,k; hence,∀j 6= k, R1,j

andR2,k are independent variates.

III. POWER CORRELATION COEFFICIENT

In this section, we first present some Gaussian statistical
properties, which will be useful in calculating the power
correlation coefficient. We then derive this statistic for the
general fading model described in Section II. Finally, special
cases of the general model are considered.

A. Gaussian Statistical Properties

Suppose two jointly Gaussian random variablesZ1 andZ2,
respectively with meansmZ1

and mZ2
, variancesσ2

Z1
and

σ2

Z2
, and correlation coefficientν. Then, their joint probability

density function is

fZ1Z2
(z1, z2) =

1

2πσZ1
σZ2

√
1 − ν2

exp

[

− (z1 − mZ1
)2

2σ2

Z1
(1 − ν2)

]

× exp

[

ν
(z1 − mZ1

)(z2 − mZ2
)

σZ1
σZ2

(1 − ν2)
− (z2 − mZ2

)2

2σ2

Z2
(1 − ν2)

]

(6)

By definition, the joint momentE{Z2
1Z2

2} is

E{Z2

1Z2

2} =

∫

∞

−∞

∫

∞

−∞

z2

1z
2

2fZ1Z2
(z1, z2)dz1dz2 (7)

Substituting (6) into (7) and solving the integration yields

E{Z2

1Z2

2} = 4νmZ1
mZ2

σZ1
σZ2

+ 2ν2σ2

Z1
σ2

Z2

+
(

m2

Z1
+ σ2

Z1

) (

m2

Z2
+ σ2

Z2

)

(8)

From the definition of variance

E{Z2

i } = m2

Zi
+ σ2

Zi
i = 1, 2 (9)

and from the definition of covariance

Cov{Z2

1 , Z2

2} = E{Z2

1Z2

2} − E{Z2

1}E{Z2

2} (10)

Replacing (8) and (9) into (10) results

Cov{Z2

1 , Z2

2} = 4νmZ1
mZ2

σZ1
σZ2

+ 2ν2σ2

Z1
σ2

Z2
(11)

When Z1 = Z2 = Z, i.e., mZ1
= mZ2

= mZ , σZ1
=

σZ2
= σZ , andν = 1, the expression (11) reduces to

V ar{Z2} = 4m2

Zσ2

Z + 2σ4

Z (12)

B. General Model

From the independence ofRi,j andRi,k, ∀j 6= k,

V ar{Wi} =

ni
∑

j=1

V ar{R2

i,j} i = 1, 2 (13)

Moreover, becauseXi,j andYi,j are uncorrelated variates

V ar{R2

i,j} = V ar{X2

i,j} + V ar{Y 2

i,j} i = 1, 2 (14)

wherej = 1, 2, ..., ni.
Applying (12) toXi,j and toYi,j , and using (13) and (14)

V ar{Wi} =

ni
∑

j=1

[

4(m2

Xi,j
σ2

Xi,j
+ m2

Yi,j
σ2

Yi,j
)

+2(σ4

Xi,j
+ σ4

Yi,j
)
]

i = 1, 2 (15)

From the independence ofR1,j andR2,k, ∀j 6= k,

Cov{W1, W2} =

n0
∑

j=1

Cov{R2

1,j , R
2

2,j} (16)

Of course, theunsharedclusters have no contribution to the
covariance ofW1 andW2.
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The covariance ofR2
1,j andR2

2,j is

Cov{R2

1,j , R
2

2,j} = Cov{X2

1,j , X
2

2,j} + Cov{X2

1,j, Y
2

2,j}
+ Cov{Y 2

1,j , X
2

2,j} + Cov{Y 2

1,j , Y
2

2,j} (17)

Applying (11) to the pairs (X1,j , X2,j), (X1,j, Y2,j),
(Y1,j , X2,j), and(Y1,j , Y2,j), and using (16) and (17)

Cov{W1, W2} =

n0
∑

j=1

[

2ν2

1,j(σ
2

X1,j
σ2

X2,j
+ σ2

Y1,j
σ2

Y2,j
)

+ 4ν1,j(mX1,j
mX2,j

σX1,j
σX2,j

+ mY1,j
mY2,j

σY1,j
σY2,j

)

+ 4ν2,j(mX1,j
mY2,j

σX1,j
σY2,j

− mY1,j
mX2,j

σY1,j
σX2,j

)

+2ν2

2,j(σ
2

X1,j
σ2

Y2,j
+ σ2

Y1,j
σ2

X2,j
)
]

(18)

By definition, the correlation coefficient ofW1 andW2 is

δW =
Cov{W1, W2}

√

V ar {W1}V ar {W2}
(19)

The substitution of (15) and (18) into (19) provides the
power correlation coefficient of the general model described
in Section II. Owing to the generality of such a model, its
power correlation coefficient depends on a great number of
free parameters. For this reason, in the following subsections,
we cope with some cases that, despite being simplifications of
the present one, are rather general and used in the literature.
The assumptions of each case will enable us to express the
power correlation coefficient in a simple and compact way.

C. One Cluster

In case each signal is composed of onesharedcluster and
no unsharedcluster (n0 = n1 = n2 = 1), the sums in (15)
and (18) have only one term each. Thus, replacing these terms
into (19) and after some algebraic manipulations, it results that

δW =
2

∏

i=1

[

[

η2

i (2kXi
+ 1) + 2kYi

+ 1
]

−1/2
]

×
[

2ν1

(

η1η2

√

kX1
kX2

+
√

kY1
kY2

)

+ 2ν2

(

η1

√

kX1
kY2

− η2

√

kY1
kX2

)

+ν2

1 (1 + η1η2) + ν2

2 (η1 + η2)
]

(20a)

where

kXi
= m2

Xi
/σ2

Xi
i = 1, 2 (20b)

kYi
= m2

Yi
/σ2

Yi
i = 1, 2 (20c)

ηi = σ2

Xi
/σ2

Yi
i = 1, 2 (20d)

Some models which consider the signal as composed of one
cluster are listed below.

1) Rayleigh Model:In each signal of this model, the in-
phaseXi and quadratureYi components have zero means and
equal variances

mXi
= mYi

= 0 i = 1, 2 (21a)

σXi
= σYi

= σi i = 1, 2 (21b)

For this model, the power correlation coefficient is ex-
pressed simply as

δW = ρ2 (22)

It has been observed in the literature [10], [11] that the
envelope correlation coefficient of the Rayleigh model is very
close toρ2, which corresponds exactly to the power correlation
coefficient of such a model.

2) Ricean Model:In each signal of this model, the in-phase
Xi and quadratureYi components have equal variances

σXi
= σYi

= σi i = 1, 2 (23)

For this model, the power correlation coefficient reduces to

δW =
ρ2 + 2ρ

√
k1k2 cos (φ + ϕ1 − ϕ2)

√

(1 + 2k1)(1 + 2k2)
(24a)

where2

ρ =
√

ν2
1

+ ν2
2

(24b)

φ = arg (ν1 + Iν2) (24c)

ki =
m2

Xi
+ m2

Yi

2σ2
i

i = 1, 2 (24d)

ϕi = arg (mXi
+ ImYi

) i = 1, 2 (24e)

The parameterki represents the power ratio of the line-of-
sight (or direct) component to the scattered component and is
commonly referred to as the Ricean factor.

For k1 = k2, (24) equals the power correlation coefficient
provided in [12]. In that work, it has been shown that the
statistic in question constitutes an accurate approximation to
the envelope correlation coefficient.

3) Hoyt Model: In this model, the means of the in-phase
Xi and quadratureYi components are null

mXi
= mYi

= 0 i = 1, 2 (25)

In such a case, the power correlation coefficient simplifies
to

δW =
ν2
1(1 + η1η2) + ν2

2 (η1 + η2)
√

(1 + η2
1
)(1 + η2

2
)

(26)

The Hoyt model is symmetric for0 ≤ ηi ≤ 1 and1 ≤ ηi ≤ ∞
(0 ≤ η−1

i ≤ 1), i = 1, 2. For (26), this can be proved replacing
η1 by η−1

1
andη2 by η−1

2
and verifying that the expression of

δW remains unchanged. Therefore, in the Hoyt model, the use
of the range0 ≤ ηi ≤ 1 is sufficient to describe completely
the influence ofηi on δW .

4) Asymmetricalη−κ Model: In this model [5], the mean
of one quadrature component is null. Thus, there are two
Asymmetricalη − κ models: one in which

mXi
= 0 i = 1, 2 (27a)

κi =
m2

Yi

σ2

Xi
+ σ2

Yi

=
kYi

1 + ηi
i = 1, 2 (27b)

2In this work, the functionarg (·) is the argument of the complex number
enclosed within, andI is the imaginary unit.
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and an other in which

mYi
= 0 i = 1, 2 (27c)

κi =
m2

Xi

σ2

Xi
+ σ2

Yi

=
kXi

1 + η−1

i

i = 1, 2 (27d)

For the former case

δW =

2
∏

i=1

[

[

2(1 + ηi)κi + η2

i + 1
]

−1/2
]

×
[

2ν1

√

(1 + η1)(1 + η2)κ1κ2

+ν2

1 (1 + η1η2) + ν2

2 (η1 + η2)
]

(28a)

and for the latter case

δW =

2
∏

i=1

[

[2ηi(1 + ηi)κi + η2

i + 1]−1/2

]

×
[

2ν1

√

η1η2(1 + η1)(1 + η2)κ1κ2

+ν2

1 (1 + η1η2) + ν2

2 (η1 + η2)
]

(28b)

5) Symmetricalη − κ Model: In this model [6], it is
assumed that

m2

Xi

m2

Yi

=
σ2

Xi

σ2

Yi

i = 1, 2 (29a)

andκi is defined as

κi =
m2

Xi

σ2

Xi

=
m2

Yi

σ2

Yi

i = 1, 2 (29b)

Thus, for this model

δW =

2
∏

i=1

[

[

(1 + η2

i )(1 + 2κi)
]

−1/2
]

× [2
√

κ1κ2[ν1 (1 + η1η2) + ν2 (η1 − η2)]

+ν2

1 (1 + η1η2) + ν2

2 (η1 + η2)
]

(30)

6) Generalizedη − κ Model: In this model, the in-phase
and quadrature components have arbitrary means and vari-
ances. Thus, the power correlation coefficient of this modelis
obtained directly by changing the notation fromkXi

andkYi

to κXi
andκYi

in the equation (20).

D. Identically Distributed Clusters (I.D. Clusters)

In this subsection, we will investigate the case in which the
marginal statistics are identical for all clusters

mXi,j
= mXi

mYi,j
= mYi

j = 1, 2, ..., ni (31a)

σXi,j
= σXi

σYi,j
= σYi

j = 1, 2, ..., ni (31b)

and the joint statistics are equal for allsharedclusters

ν1,j = ν1 ν2,j = ν2 j = 1, 2, ..., n0 (31c)

Thus, substituting (15) and (18) into (19), considering
(31), and making some algebraic manipulations, the power

correlation coefficient equals

δW =

√

µ1

µ2

α

2
∏

i=1

[

[

η2

i (2kXi
+ 1) + 2kYi

+ 1
]

−1/2
]

×
[

2ν1

(

η1η2

√

kX1
kX2

+
√

kY1
kY2

)

+ 2ν2

(

η1

√

kX1
kY2

− η2

√

kY1
kX2

)

+ν2

1 (1 + η1η2) + ν2

2 (η1 + η2)
]

(32a)

wherekXi
, kYi

, andηi are given in (20) and

α =
µ0

µ1

(32b)

µi = ni i = 0, 1, 2 (32c)

The parameterα denotes the proportion of clusters ofS1 that
are sharedwith S2. For µ0 = µ1 = µ2 = 1, (32) reduces to
(20).

It is noteworthy that, in (15) and (18),n0, n1, and n2

are necessarily integers. However, differently from the general
case, there is no mathematical constraint in consideringµ0, µ1,
andµ2 as non-integers in (32). In fact, the extension of those
parameters from the discrete domain (ni) to the continuous
domain (µi) has been broadly applied in the literature [7]–[9].

Two models which consider i.d. clusters are the Nakagami-
m [7] and theη−µ [9] ones. In theκ−µ model [8], the relation
(31a) is not satisfied, and hence the clusters are non-identically
distributed (n.d.). Here, we shall deal with theκ − µ model
considering i.d. clusters; for n.d. clusters, the power correlation
coefficient of that model can be obtained through the general
result provided in the Subsection III-B.

1) Nakagami-m Model:In this model [7], in addition to i.d.
clusters, the in-phaseXi,j and quadratureYi,j components of
each cluster have zero means and equal variances

mXi
= mYi

= 0 i = 1, 2 (33a)

σXi
= σYi

= σi i = 1, 2 (33b)

With these considerations, (32) reduces to

δW =

√

µ1

µ2

αρ2 (34)

where ρ is given in (24b). Forµ0 = µ1 = µ2 = 1,
(34) simplifies to (22); forα = 1, (34) equals the power
correlation coefficient provided in [13]. In this case, that
statistic constitutes an accurate approximation to the envelope
correlation coefficient [14].

2) κ − µ Model (I.D. Clusters): Generically, this model
assumes that [8]

σXi
= σYi

= σi i = 1, 2 (35a)

and defines the parameterκi as [8]

κi =

∑ni

j=1

[

m2

Xi,j
+ m2

Yi,j

]

2niσ2
i

i = 1, 2 (35b)

Considering i.d. clusters, the parameterκi equals

κi =
m2

Xi
+ m2

Yi

2σ2
i

i = 1, 2 (36)
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and the power correlation coefficient is

δW =

√

µ1

µ2

α
[

ρ2 + 2ρ
√

κ1κ2 cos (φ + ϕ1 − ϕ2)
]

√

(1 + 2κ1)(1 + 2κ2)
(37)

whereρ, φ, andϕi are given in (24). Forµ0 = µ1 = µ2 = 1,
(37) simplifies to (24a).

3) η − µ Model: In this model [9], in addition to i.d.
clusters, the in-phaseXi,j and quadratureYi,j components
of each cluster have zero means

mXi
= mYi

= 0 i = 1, 2 (38)

In this case, the power correlation coefficient is

δW =

√

µ1

µ2

α
[

ν2
1(1 + η1η2) + ν2

2 (η1 + η2)
]

√

(1 + η2
1
)(1 + η2

2
)

(39)

where ρ is given in (24b). Forµ0 = µ1 = µ2 = 1, (39)
simplifies to (26).

E. Stationary Environments

For stationary environments, the following equalities must
be substituted into the expressions of the power correlation
coefficients of their respective models

• Rice: k1 = k2 andϕ1 = ϕ2;
• Hoyt: η1 = η2;
• Asymmetricalη − κ: η1 = η2 andκ1 = κ2;
• Symmetricalη − κ: η1 = η2 andκ1 = κ2;
• Generalizedη−κ: η1 = η2, κX1

= κX2
, andκY1

= κY2
;

• Nakagami-m:µ1 = µ2;
• κ − µ: µ1 = µ2, κ1 = κ2, andϕ1 = ϕ2;
• η − µ: µ1 = µ2 andη1 = η2.

IV. N UMERICAL RESULTS AND COMMENTS

In this section, we present some plots illustrating the power
correlation coefficient of the Rayleigh, Rice, and Hoyt distri-
butions in stationary environments. For such environments

δW =
ρ2 + 2kν1

1 + 2k
Ricean Model (40a)

δW =
ν2
1 (1 + η2) + 2ν2

2η

1 + η2
Hoyt Model (40b)

In the specification of the parametersν1 and ν2, we shall
assume the mathematical model described by Jakes [10],
which provides

ν1 =
E {D(Θ) cos [βd cos (Θ) − ∆ωT]}

E{D(Θ)} (41a)

ν2 =
E {D(Θ) sin [βd cos (Θ) − ∆ωT]}

E{D(Θ)} (41b)

where β is the phase constant,d is the distance between
the reception points,∆ω is the angular frequency difference
between the transmitted signals, andΘ and T are random
variables which denote, respectively, the angles of arrival and
the times of arrival of the scattered waves.

0 5 10 15 20

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

 

βd

δ W
(d

)

k = 0, 0.1, 0.2, 0.5, 1, 2, 4,∞

Fig. 1. Space correlation coefficient of the instantaneous power for the Ricean
model withk1 = k2 andϕ1 = ϕ2.

With the intention of maintaining compatibility with the
results already available for the Rayleigh case [10], we shall
consider

D(θ) = 1 (42a)

pΘ,T(θ, t) = pΘ(θ)pT(t) (42b)

pΘ =
1

2π
0 ≤ θ ≤ 2π (42c)

pT(t) =
1

T
exp

(

− t

T

)

t ≥ 0 (42d)

whereT is the time delay spread. From (41) and (42)

ν1 =
J0(βd)

1 + (∆ωT)2
(43a)

ν2 = −∆ωTJ0(βd)

1 + (∆ωT)2
(43b)

The space correlation coefficientδW (d) and the frequency
correlation coefficientδW (∆ω) are obtained by setting, re-
spectively,∆ω = 0 and d = 0. For a mobile receiver, the
distanced is a function of the timeτ , and henceδW (d) is
converted into the time correlation coefficientδW (τ).

A. Space (or Time) Correlation Coefficient In Stationary En-
vironments

Fig. 1 shows some plots ofδW (d) for the Ricean model
with different values ofk. As it can be seen, the space
correlation coefficient is minimum atk = 0 (Rayleigh model)
and increases with increasingk.

For the Hoyt model, (40b) and (43b) provide a space
correlation coefficient independent ofη: from ∆ω = 0 and
(43b),ν2 = 0; hence, substitutingν2 = 0 into (40b),δW = ν2

1

(independent ofη).

B. Frequency Correlation Coefficient In Stationary Environ-
ments

Similarly to the Hoyt model in the space (or time) domain,
the Ricean model withν1 and ν2 as provided in (43) has a
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Fig. 2. Frequency correlation coefficient of the instantaneous power for the
Hoyt model withη1 = η2.

frequency correlation coefficient independent ofk: from d =
0, (24b), and (43),ν1 = ρ2; hence, substitutingν1 = ρ2 into
(40a),δW = ρ2 (independent ofk).

Fig. 2 illustrates some plots ofδW (∆ω) for the Hoyt model
with different values ofη. It can be observed that, in the
range0 ≤ η ≤ 1, the greater the value ofη the stronger
the frequency correlation coefficient between the instantaneous
powers. Therefore, since the Hoyt model is symmetric for
0 ≤ η ≤ 1 and1 ≤ η ≤ ∞, the strongest frequency correlation
coefficient occurs whenη = 1 (Rayleigh model).

V. CONCLUSION

In this work, we have provided the power correlation
coefficient of a very general fading model. Besides allowing
for both identically and non-identically distributed clusters,
and for both stationary and nonstationary environments, the
model includes the Rayleigh, Rice, Nakagami-m, Hoyt, among
other distributions as particular cases. Then, after deriving the
power correlation coefficient of the general model, it has been
presented simple and compact expressions of that statisticfor
special models. Finally, assuming stationary environments and
the mathematical model proposed by Jakes [10], the Rayleigh,
Ricean, and Hoyt power correlation coefficients have been
contrasted in both space domain and frequency domain.
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