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Abstract— This work provides the power correlation coefficient In this work, we derive the correlation coefficient of the
of a very general fading model. The model considers the sigha nstantaneous powers (or squared envelopes) of two signals
as composed of identically/non-identically distributed tusters, ;, 4 very general fading model. Such a model considers each
allows for stationary/nonstationary environments, and ircludes . | d of clust ) f The in-oh d
many distributions as particular cases, such as the Raylefg Rice, signal as composed or clusters of waves. 1nhe In-phase an
Nakagami-m, and Hoyt (Nakagami-g) ones. After deriving the gquadrature components of each cluster are Gaussian random
power correlation coefficient of the general model, that stastic is ~ variables with arbitrary means and variances. Thus, theeinod
particularized for some important simplified models. Finally, for  jncludes all previously mentioned models as particulaesas
the Rayleigh, Rice, and Hoyt distributions, the power corréation  p,tharmore, the model is valid for both identically and nion
coefficient is investigated in both space domain and frequey . - S ot
domain. identically distributed clusters, and for both statiornaand

nonstationary environments.

After obtaining the power correlation coefficient of the
general fading model, we particularize this statistic fomg
important models. Finally, numerical results are presgiite
order to compare the power correlation coefficient of the
Rayleigh, Rice, and Hoyt distributions in both space domain

In wireless communications, the signal strength fluctuatesad frequency domain.
randomly throughout the propagation environment in a fastThe paper is organized as follows. In Section Il, the general
fading condition. This fluctuation is caused by the muliipatfading model is described. In Section Ill, the power coitieta
phenomenon, in which the signal reaching the receiver dsefficient is derived. In Section IV, some plots and resaiés
composed of a large number of scattered waves that arise frekamined. In Section V, some conclusions are drawn.
different paths. The amplitudes and phases of these waeges ar
random variables, and hence the envelope and the phase of Il. GENERAL FADING MODEL
the r_ecelvgd S|gnal_have random behaviors. In some ph_ysma*n this section, we describe the marginal and joint stagsti
configurations, besides the scattered waves, the signédas a : . .

) . concerning two signalsy; andSs, of the general fading model
influenced by a specular (or dominant) wave. . : : h
R investigated in this work.

Many distributions have already been proposed to describe
the signal envelope in a fading channel. In some of them, such _ o
as the Rayleigh [1], the Rice [2], [3], the Hoyt (Nakagamif. Marginal Statistics
q) [4], the Asymmetricaly — « [5], the Symmetrical) — & The signal of our general fading model consists of clusters
[6], and the Generalizeg — « distributions, the in-phase andof waves, each of which composed of a dominant wave and of
quadrature signal components are Gaussian variates. Fhe giultipath (or scattered) waves. Denoting the envelope ef th
ference among these models are in the assumptions congergignal S; as R;, the corresponding instantaneous powgr
the means and variances of the quadrature components: (esquared envelop&?) is
Rayleigh model considers zero means and equal varianees; th .

Ricean model, arbitrary means and equal variances; the Hoyt W, = R? = ZRz _ i=1.2 1)

. . . Y
model, zero means and arbitrary variances; the Asymmetrica ’ = i
n—x model, zero mean in one quadrature component, arbitrar
mean in the other, and arbitrary variances; the Symmetrié%l
n—«~ model, arbitrary means and variances whose ratio is eqﬁ@r b
to the ratio of the squared means; and the Generaljzed: given by
model, arbitrary means and variances. In other distribstio sz — XiQ,j + yﬁj i=1,2,...n (2)
such as the Nakagami-m [7], tle- 14 [8], and then— 1. [9], the . .
signal is composed of clusters of waves. These models difidhere X;; andY; ; are uncorrelated Gaussian random vari-
from each other in the statistical properties of the clisste@bles that correspond, respectively, the in-phase and guael
in the Nakagami-m model, each cluster follows the Rayleigh, _ _ , _
distribution: in ther — 1 model. the Rice distribution: and in In this work, the termstationary environmendesignates the environment

IS J k—H e AT ' where the statistics of one signal are equal to their copaterof the other
the n — 1 model, the Hoyt distribution. signal.

Index Terms— Correlation coefficient, fading model, Hoyt dis-
tribution, Nakagami-m distribution, Rayleigh distributi on, Rice
distribution.

I. INTRODUCTION

eren; is the number of clusters ;. In each signal, the
iatesR; ;, 7 = 1,2,...,n;, are mutually independent and



components of each cluster. The variafég; andY; ; have A. Gaussian Statistical Properties

meansmy, ; andmy; ;, which arise from the dominant wave Suppose two jointly Gaussian random variablgsand Zo,

. : 9 .
of the jth cluster, and variances}, =~ ando?. , which stem respectively with meansn, and m,, variancess%, and

from the multipath waves of thﬁ.th, cluster. Finally, without 0_% , and correlation coefficient. Then, their joint probablllty
loss of generality, we shall consider 2

density function is
ng > nq (3 1

2
zZ1— My
. . . R LEACTE - T P {2(02(17_;)2)}
In particular, for stationary environments, the statstaf m07,0Z, V1 —V Z
one signal are equal to their counterpart of the other signal, {V (21 —mgz)(za —mgz,) (22 —mgz,)? ]

(6)

Therefore, in these environments, = n, = n and 0z,02,(1 —1?) B 20% (1 —v?)

mx,, =mx,, My, =my,, j=1.,n (4a) By definition, the joint momenE{Z322} is

00X, ,; = 0Xy; Oy, ; = 0Ys 7=1..,n (4b) o0 o0
! * : : E{ZIQZQQ}:/ / zfz%lezz(zl,@)dzld@ @)

B. Joint Statistics

The dependency of the signals and.S; occurs by means
of ng clusters,ng < ni. These clusters will be referred to as
sharedclusters and will be indexed, without loss of generality, + (m%, +0%,) (m%, +0%,) (8)
as the firstng clusters ofS; as well as the firsh clusters of
So. Thus, forng < j < n;, i = 1,2, the jth cluster ofS; has
no corresponding cluster in the other signal. These clsister E{Z?} = m2ZI_ + ‘7%1- i=1,2 (9)
will be referred to asinsharedclusters. o _

1) Shared Clustersin the jth sharedcluster, X, ;, Y; ;, and from the definition of covariance
Xo i, andY; ; are jointly Gaussian random variables, and their 2 2 2,9 2 2
correlation E:joefficjientsyare defined as CovtZy, 23} = BAZi2,} - BAZi}E{Z,} - (10)

Substituting (6) into (7) and solving the integration yield

2 r72 2 2 2
E{leg} = 4l/mzlm220'210'22 + 2v 02,07,

From the definition of variance

b2 E{X1;Xa;} —mx, ;mx, Replacing (8) and (9) into (10) results
! 0X1,;0Xs,; Cov{Z3,Z3} = dvmz mz,0z,07, + 20705 0y (11)
E{Y1,;Y2;} —my, .my, i
2 { = UJ} e = 2 (Sa) When 7z, = Z, = Z, i.e,, Mz, = Mgz, = Mg, Oz, =
B{X Yyl’}j Y25 oz, = 0z, andv = 1, the expression (11) reduces to
A Lj¥2 5 —MX, ; MYy,
V2.3 OX,,0Ys, Var{Z?} = 4m%o% + 205 (12)
s BN Xog)t —my mx, (5b)
Oy, ;0X,, B. General Model

wherej = 1,2, ...,no. In a fading environment, these coeffi- From the independence d; ; and R; i, Vj # k,
cients depend on the distance between the reception pomts,

the frequency difference between the transmitted sigaaid, Var{W;} = Z Var{R} ;} i=1,2 (13)
on the statistical behavior of the angles of arrival and §me j=1

of arrival of the scattered waves [10], [11].

2) Unshared ClustersEach one of thainsharedclusters
is present in only one signal. Thus, fep < j < ny, the Var{R};} = Var{X};} + Var{Y?} i=12 (14)
jth cluster ofS; is statistically independent of thgh cluster ,
of S. Consequently, fom, < j < ni, X1, and Yy ; are Wherej =1,2,...n;. _
independent oft, ; and Y, as well asR; ; is independent ~ APPIYING (12) t0.X; ; and toY; ;, and using (13) and (14)

Moreover, becausg; ; andY; ; are uncorrelated variates

of RQJ‘. N
3) Distinct IndexesFor distinct indexesyj # k, X, ; and Var{W;} = Z [4(””‘%@,3-‘7%@4 +my, oy, )
Y: ; are independent ok, ;, and Y ;; henceVj # k, Ry ; 3=1
and R, are independent variates. +2(0§(I_ L+ U%G,j )} i=1,2 (15)
lll. POWER CORRELATION COEFFICIENT From the independence &, ; and Ry x, Vj # F,
In this section, we first present some Gaussian statistical o 5 o
properties, which will be useful in calculating the power Cov{W1, Wa} :ZCOU{RLJ"R%} (16)

correlation coefficient. We then derive this statistic foet 7=1
general fading model described in Section Il. Finally, $plec Of course, theunsharedclusters have no contribution to the
cases of the general model are considered. covariance ofi¥; and Ws.



The covariance of?} ; and R3 ; is For this model, the power correlation coefficient is ex-

pressed simply as
Cov{R? ;, R ;} = Cov{ X7 ;, X3 ;} + Cov{X7 ;, Y5}

1,5

2
+ Cov{Y?;, X3 ;} + Co{Y?, Y3} (17) ow = p (22)
Applying (11) to the pairs (X, ;, Xa2;), (X1, Y2,), It has been observed in the literature [10], [11] that the
(Y14, X2;), and (Y7 ;, Ya;), and usiﬁg (1é) and (1’7) ’ envelope correlation coefficient of the Rayleigh model igyve

close top?, which corresponds exactly to the power correlation
coefficient of such a model.
2) Ricean Model:in each signal of this model, the in-phase

no

Cov{Wy, Wy} = Z [2V12,j(‘7§<1,j0§<2,1 + a%flyja%@,j)

=t X, and quadratur&; components have equal variances

+ 4V17j(mX17ij27jUX17j0X27j + mYl,ijz,jUYl,jUYg,j)

vy (M, My, ;00 0Ys 5 = MYy MXs ;Y10 Xa,,) OX; = OY: = 0 i=12 (23)

+203 (0%, 0%, , + 0%, 0%, )} (18) For this model, the power correlation coefficient reduces to

By definition, the correlation coefficient d; and W is 5 0% + 2p\V/kiks cos (¢ + @1 — @2) (242)

W=
5 Cov{Wy, W5} (19) V(1 +2k1) (1 + 2k2)
W=
VVar (Wi} Var {Wa} wheré&

The substitution of (15) and (18) into (19) provides the B 2 5 24b
power correlation coefficient of the general model desctibe P=\ VT, (24Db)
in Section Il. Owing to the generality of such a model, its ¢ = arg (v1 + o) (24c)
power correlation coefficient depends on a great number of m2 +m2
free parameters. For this reason, in the following subsesti ki = =5 i=1,2 (24d)
we cope with some cases that, despite being simplificatibns o ! ‘

@i = arg (mXi + Iin) L= 1) 2 (249)

the present one, are rather general and used in the literatur

The assumptions of each case will enable us to express Mg parametet; represents the power ratio of the line-of-
power correlation coefficient in a simple and compact way. sight (or direct) component to the scattered componentand i
commonly referred to as the Ricean factor.

C. One Cluster For k1 = ko, (24) equals the power correlation coefficient
d provided in [12]. In that work, it has been shown that the
statistic in question constitutes an accurate approxonat
rtﬁqe envelope correlation coefficient.

§) Hoyt Model: In this model, the means of the in-phase
X, and quadratur&; components are null

In case each signal is composed of aaredcluster an
no unsharedcluster (g = ny = ny = 1), the sums in (15)
and (18) have only one term each. Thus, replacing these te
into (19) and after some algebraic manipulations, it reshiat

2 _ mx, =my, =0 1=1,2 (25)
ow =T [k, +1) + 2ky, +1] 77 | R
i In such a case, the power correlation coefficient simplifies
to
X |:2V1 (7717’2 \/le sz + \/le kYz) 5W _ 1/12(1 + 771772) + y% (771 + 772) (26)
+ 21, (771\/kX1kY2 *nzx/kylkxz) (I+73)(1+n3)
+v2 (1 +mm) + V2 (1 + 772)] (20a) The Hoyt model is symmetric fdr <7, <1andl <; < oo
0< 77;1 <1),i=1,2. For (26), this can be proved replacing
where m by n;t andny by n, ! and verifying that the expression of
_ 2 9 19 > ow remains unchanged..There_fc_Jre, in the Hoyt model, the use
kx; mQXi/ZX’L‘ Z ’ (20b) of the ranged < n; < 1 is sufficient to describe completely
ky, = my, /oy, i=1,2 (20¢)  the influence ofy; on oy .
n = 0%,/0%, i=1,2 (20d)  4) Asymmetricah — x Model: In this model [5], the mean

dels which ider the sianal d of of one quadrature component is null. Thus, there are two
Some models which consider the signal as composed o %mmetricaln— . models: one in which

cluster are listed below.

1) Rayleigh Model:In each signal of this model, the in- mx, =0 i=1,2 (27a)
phaseX; and quadratur&; components have zero means and m2 ky
i Ki = = : i=1,2 27b
equal variances T 1oL Ttm (27b)
mx, =my, =0 1=1,2 (21a)
F— . N
ox, = Oy, = 0; i=1,2 (21b) In this work, the functiomrg (-) is the argument of the complex number

enclosed within, and is the imaginary unit.



and an other in which

my, =0 1=1,2 (27¢)
m2 kx.
K"L‘ = 3 X' 3 = XL71 Z = 172 (27d)
ox, T oy, 14
For the former case
6W H|: 1+77L KL+77L+1] 1/2:|
X {21/1\/ 1 +m (1 + 772)!%1/@2
+07 (1 +mme) + v3 (1 + n2)] (28a)
and for the latter case
2
ow=]1 [[2771‘(1 +ni)ki + 17 + 1]_1/2}
=1
X [2V1\/771772(1 + 1) (1 + n2)Kk1k2
+17 (L+ mme) + 5 (m + n2)] (28b)

correlation coefficient equals

2
w =\ [ a ] [t 2bx, + 1) + 24 +2] 7]
i=1
X [2V1 (7’]1772\/le kx, + \/lekY2)

+ 20 (771 Vky, sz)

le kYQ - 7’2

7 (L4 mnz) +v3 (m +12)] (32a)
whereky,, ky,, andn; are given in (20) and
a=H (32b)
%31

The parametes denotes the proportion of clusters 8f that
are sharedwith Sy. For g = 1 = pe = 1, (32) reduces to
(20).

It is noteworthy that, in (15) and (18);9, n1, and no
are necessarily integers. However, differently from theegal
case, there is no mathematical constraint in considering,
andu» as non-integers in (32). In fact, the extension of those

5) Symmetricaly — x Model: In this model [6], it is Parameters from the discrete domain)(to the continuous
assumed that domain {;) has been broadly applied in the literature [7]-[9].
) ) Two models which consider i.d. clusters are the Nakagami-
m>2<7, _ 092@, i=1,2 (29a) M [7]and then—y. [9] ones. In the:— 1 model [8], the relation
my, Oy, (31a) is not satisfied, and hence the clusters are non-idéigti
: ' distributed (n.d.). Here, we shall deal with the— ; model
andk; is defined as A ] )
considering i.d. clusters; for n.d. clusters, the powerealation
m?xi m%/i ) coefficient of that model can be obtained through the general
i = o o i=1,2 (29b)  result provided in the Subsection I1I-B.
‘ ‘ 1) Nakagami-m Modelin this model [7], in addition to i.d.
Thus, for this model clusters, the in-phas&; ; and quadratur&; ; components of
each cluster have zero means and equal variances
Sw = H[ (1+m2)(1 + 25)] 1/2} mx, = my, =0 i=1,2 (33a)
[2\/1‘611‘62[’/1 (1 +mne) + v2 (n — n2)] IX; = 0x; = 0i i=12 (33b)
U3 (14 mme) + V3 (m +1m2)] (30) With these considerations, (32) reduces to
6) Generalized; — x Model: In this model, the in-phase Sw = Eap? (34)
and quadrature components have arbitrary means and vari- H2
ances. Thus, the power correlation coefficient of this maglelwhere p is given in (24b). Foruy = 1 = p2 = 1,

obtained directly by changing the notation frofg, andky,
to kx, andky, in the equation (20).

D. Identically Distributed Clusters (I.D. Clusters)

(34) simplifies to (22); fora = 1, (34) equals the power
correlation coefficient provided in [13]. In this case, that
statistic constitutes an accurate approximation to thelepe
correlation coefficient [14].

2) kK — 1 Model (1.D. Clusters): Generically, this model

In this subsection, we will investigate the case in which tressumes that [8]

marginal statistics are identical for all clusters

mx.

i,

(31a)
(31b)

=mx.

k3

my,

UXw‘ =0X; ey Ny

and the joint statistics are equal for atharedclusters

V,;=mn Vg = 12 j = ]., 2, ...y, o (31C)

Thus, substituting (15) and (18) into (19), considering
(31), and making some algebraic manipulations, the power

ox, =0y, = 0; 1=1,2 (35a)
and defines the parameter as [8]
27;1 m?xw + mQY”
ki = 5 i=1,2 (35b)
2n;0;
Considering i.d. clusters, the parametgrequals
m% +m?

fy = i Yo i=1,2 (36)

207



1,0

and the power correlation coefficient is

\/Ea [p° + 2p/RiRz cos (¢ + 1 — p2)] 08

ow =,/ — (37)

2 V(1 +2k1) (1 + 2k2) 06

wherep, ¢, andyp; are given in (24). Fopy = p1 = p2 = 1,

(37) simplifies to (24a). o4 k=0,0.1,0.2,0.5,1,2,4, 00
3) n — p Model: In this model [9], in addition to i.d. < o2

clusters, the in-phas&(; ; and quadrature’; ; components §

of each cluster have zero means 00
mx, = my, =0 1=1,2 (38) -0,2
In this case, the power correlation coefficient is 0.4
(o [V3(1+ + 13 (m + s w0
Sy — fi1 @ [Vl( 7717722 Vs (77; 772)] (39) 0 5 ﬂlc(i) 15 20
H2 (1 +n)(1 +n3)

Fig. 1. Space correlation coefficient of the instantaneawsep for the Ricean

where p is given in (24b). Foruy = pu1 = ps = 1, (39) model with ky = kp and o1 — o,

simplifies to (26).
With the intention of maintaining compatibility with the
results already available for the Rayleigh case [10], wdl sha

consider
For stationary environments, the following equalities thus

E. Stationary Environments

be substituted into the expressions of the power corr@latio D) =1 (42a)
coefficients of their respective models pe,t(0,t) = pe(d)pr(t) (42b)
¢ Rice:k; = ky and ©p1 = P2, po = i 0<0<2m (42C)
. Hoyt: m = 12, 2m
o Asymmetricaly — x: 1 = 1> and ey = f; pr(t) = i‘3XP <i> t>0 (42d)
o Symmetricaly — x: n; = 12 andxy = Ko T T

« Generalized) — i 11 =12, kx, = Kix,, ARy, = Kv3)  \whereT is the time delay spread. From (41) and (42)
o Nakagami-myu; = puo;

o K — [ b1 = U2, K1 = K2, andgal = 2, v, = JO(ﬁd)_ (433.)
o 1) — 1 = po andny = ns. 1+ (AwT)?
AwT d

vy = 7% (43b)
IV. NUMERICAL RESULTS AND COMMENTS 1+ (AwT)

In this section, we present some plots illustrating the powe 1he space correlation coefficiedit (4) and the frequency
correlation coefficient of the Rayleigh, Rice, and Hoyt dist Correlation coefficienty (Aw) are obtained by setting, re-

butions in stationary environments. For such environments SPectively,Aw = 0 andd = 0. For a mobile receiver, the
distanced is a function of the timer, and hencey (d) is

W= p* + 2k Ricean Model (40a) converted into the time correlation coefficiehi (7).
1+ 2k
S = vi(1+n°) +2v3n Hoyt Model (40b) A Space (or Time) Correlation Coefficient In Stationary En-
1+7n2 vironments
In the specification of the parameters and v», we shall ~ Fig. 1 shows some plots afy (d) for the Ricean model
assume the mathematical model described by Jakes [Mith different values ofk. As it can be seen, the space
which provides correlation coefficient is minimum &t = 0 (Rayleigh model)
and increases with increasitg
v = E{D(©)cos [Bdcos (©) — AwT]} (41a) For the Hoyt model, (40b) and (43b) provide a space
E{D(©)} correlation coefficient independent gf from Aw = 0 and
vy — E{D(©)sin[Bdcos (©) — AwT]} (41b) (43b), 5 = 0; hence, substitutings = 0 into (40b),5y = 3

E{D(©)} (independent of).

where [ is the phase constang, is the distance between ] o ] ]
the reception pointsAw is the angular frequency differenceB- Frequency Correlation Coefficient In Stationary Envion
between the transmitted signals, a®@dand T are random ments

variables which denote, respectively, the angles of drend Similarly to the Hoyt model in the space (or time) domain,
the times of arrival of the scattered waves. the Ricean model with, and v, as provided in (43) has a



1,0

[7]
0,8
[8l
Py 0,6
3
a4
2 04 [10]
~© n=0,0.05,0.1,0.25,0.5, 1
[11]
0.2 [12]
0’0 T T T T T T — T T [13]
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Fig. 2. Frequency correlation coefficient of the instantarsepower for the
Hoyt model withn; = n2.

frequency correlation coefficient independenttoffrom d =
0, (24b), and (43)y1 = p?; hence, substituting; = p? into
(40a),0w = p? (independent of).

Fig. 2 illustrates some plots @fy (Aw) for the Hoyt model
with different values ofn. It can be observed that, in the
range0 < n < 1, the greater the value of the stronger
the frequency correlation coefficient between the instaatas
powers. Therefore, since the Hoyt model is symmetric for
0 <n<1landl <75 < o, the strongest frequency correlation
coefficient occurs when = 1 (Rayleigh model).

V. CONCLUSION

In this work, we have provided the power correlation
coefficient of a very general fading model. Besides allowing
for both identically and non-identically distributed dess,
and for both stationary and nonstationary environments, th
model includes the Rayleigh, Rice, Nakagami-m, Hoyt, among
other distributions as particular cases. Then, after degithe
power correlation coefficient of the general model, it hasrbe
presented simple and compact expressions of that st&tistic
special models. Finally, assuming stationary environsantl
the mathematical model proposed by Jakes [10], the Rayleigh
Ricean, and Hoyt power correlation coefficients have been
contrasted in both space domain and frequency domain.

REFERENCES

[1] R. H. Clarke, “A statistical theory of mobile-radio rguen,” Bell
Systems Technical Jourpalol. 47, pp. 957-1000, July—Aug. 1968.

[2] S. O. Rice, “Mathematical analysis of random noisBgll Systems
Technical Journalvol. 23, no. 3, pp. 282-332, July 1944.

[8] ——, “Mathematical analysis of random nois&ell Systems Technical
Journal vol. 24, no. 1, pp. 46-156, Jan. 1945.

[4] R. S. Hoyt, “Probability functions for the modulus andgén of the

normal complex variate,Bell System Technical Journaol. 26, pp.

318-359, Apr. 1947.

M. D. Yacoub, G. Fraidenraich, H. B. Tercius, and F. C. M, “The

Assymmetricaly — « distribution,” in Proc. International Workshop on

TelecommunicationsAug. 2004, pp. 89-93.

[6] ——, “The Symmetricaly— « distribution,” in Proc. IEEE International
Symposium on Personal, Indoor and Mobile Radio Commupicsti
vol. 4, Sept. 2004, pp. 2426—-2430.

(5]

M. Nakagami, “The m-distribution - a general formula afténsity
distribution of rapid fading,” inStatistical Methods in Radio Wave
Propagation W. C. Hoffman, Ed. Oxford, England: Pergamon, 1960,
pp. 3-36.

M. D. Yacoub, “Thex-p distribution: a general fading distribution,” in
Proc. IEEE Vehicular Technology Conferena®l. 3, Atlantic City, NJ
USA, Oct. 2001, pp. 1427-1431.

[9] ——, “The n-u distribution: a general fading distribution,” Proc. IEEE

Vehicular Technology Conferenceol. 2, Boston, MA USA, Sept. 2000,
pp. 872-877.

W. C. JakesMicrowave Mobile Communications New York: Willey,
1997.

W. C. Y. Lee, Mobile Communications Engineering McGraw-Hill,
1997.

Y. Karasawa and H. Iwai, “Modeling of signal enveloperretation of
line-of-sight fading with applications to frequecy coetbn analysis,”
IEEE Transactions on Communicatignel. 42, no. 6, June 1994.

J. Reig, L. Rubio, and N. Cardona, “Bivariate Nakagambistribution
with Arbitrary Fading ParametersElectronics Lettersvol. 38, no. 25,
pp. 1715-1717, Dec. 2002.

J. C. S. Santos Filho, G. Fraidenraich, U. S. Dias, andDMYacoub,
“On the Nakagami-m Crosscorrelation Function,’Rroc. International
Microwave and Optoelectronics Conferen@905.



